Can Multi-Cancer Early Detection Screening Result in Early Cancer Detection? A Modeling Study

Jagpreet Chhatwal,^{1,2,3} Jade Xiao,³ Selin Merdan,³ Andrew ElHabr,³ Christopher Tyson,⁴ Xiting Cao,⁴ Sana Raoof,⁵ A. Burak Ozbay,⁴ Paul Limburg,⁴ Tomasz M. Beer,⁴ Ashish Deshmukh,⁷ Andrew Briggs⁸

¹Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, ² Center for Health Decision Science, Harvard University, Boston, MA, USA, ³ Value Analytics Labs, Boston, MA, USA, ⁴ Exact Sciences Corporation, Madison, WI, USA, ⁵ Memorial Sloan Kettering Cancer Center, New York, NY, USA, ⁶ School of Public Health, University of Michigan, Ann Arbor, MI, USA, ⁷ Medical University of South Carolina, Charleston, SC, USA, ⁸ London School of Hygiene & Tropical Medicine, London, UK

BACKGROUND

- Cancer is the second leading cause of death in the United States, and the leading cause of death in 19 states in 2016.¹
- Early detection is associated with a higher chance of survival, but currently around half of cancers are detected at an advanced stage.²
- Routine screening is recommended for only four cancers (breast, cervical, colorectal, and lung),³ and two-thirds of incident cancers lack routine screening guidelines.⁴
- Emerging blood-based multi-cancer early detection (MCED) tests offer the promise of revolutionizing early cancer detection.

OBJECTIVES

We evaluated the potential impact of an MCED test as a supplement to usual care for the early detection of 12 cancers, which account for nearly 80% of all cancer incidence.⁵

METHODS

- We developed <u>Simulation Model for MCED</u> (SiMCED), a microsimulation model of 12 solid tumor cancers: breast, colorectal, endometrial, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, prostate, and urinary bladder.
- Dwell times (cancer type- and stage-specific) were synthesized from published literature and empirical estimates, and used to inform the transitions between healthy and cancer stages I-IV.
- Multiple levels of MCED test sensitivities (cancer type- and stage-specific) were derived from case-control studies with different biomarker configurations.^{6,7}
- Unobserved cancer incidence rates were estimated for each combination of sex, age group, cancer type and stage using a backwards induction approach.^{8,9}
- The model was calibrated to reproduce yearly incidence rates of cancer diagnosis via usual care as captured in the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database.
- We simulated the life course of 50 million US adults aged 50-84 years. Diagnosis of cancer could arise from usual care or MCED screening. The MCED test was administered annually or biennially to individuals aged <85 years.

Presented at ISPOR 2024 Corresponding author: JagChhatwal@mgh.harvard.edu

Table 1. Early- versus late-stage cancer diagnoses across screening scenarios							
Stages	Usual care	Usual care + MCED, annual screening			Usual care + MCED, biennial screening		
	Total diagnoses	Total diagnoses	Absolute change	Percentage change	Total diagnoses	Absolute change	Percentage change
Early-stage (I–II)	14,194	15,545 [15,223; 16,431]	1,351 -[1,028; 2,237]	10% [7; 16]%	14,957 [14,761; 15,489]	763 [567; 1,295]	5% [4; 9]%
Late-stage (III–IV)	9,229	8,067 [8,351; 7,319]	-1,162 -[878, 1,910]	-13% -[10; 21]%	8,581 [8,749; 8,132]	-649 -[480; 1,097]	-7% -[5; 12]%

Footnote: In cells corresponding to "Usual care + MCED," the first number is the value associated with the 33% sensitivity test; the numbers in square parentheses are associated with the 28% and 42% sensitivity tests.

RESULTS

Cumulative Number of New Diagnoses without MCED vs. with MCED

Figure 1.

Cancer downstaging results by screening interval (columns) and empirical sensitivity (rows)

5

Footnote:

Empirical sensitivity is the model-computed real-world sensitivity when MCED screening is performed on the general population with realistic cancer prevalences Thus, SiMCED "projects" case control sensitivities into the real world.

• **Figure 1** presents cancer downstaging results by screening interval and empirical sensitivity. • In all scenarios, there is downstaging from later stages to earlier stages due to MCED screening. • The consistent decrease in Stage IV diagnoses—ranging from 26% to 42% with annual screening and 15% to 27% with biennial screening—indicates that MCED is effective at catching cancer before it progresses to Stage IV. • MCED screening increases the total number of diagnoses by at most 1% across all scenarios. • For a given screening interval, the higher the empirical sensitivity, the greater the amount of downstaging. • For a given sensitivity level, annual screening produces more downstaging than biennial screening.

- **Table 1** compares early- and late-stage cancer diagnoses across screening scenarios.
- Using the 33% sensitivity test with an annual screening interval, the rate of early-stage diagnoses increases by 1,351 (10%) per 100,000, while the rate of late-stage diagnoses decreases by 1,162 (13%) per 100,000.
- For the same test and a biennial screening interval, the rate of early-stage diagnoses increases by 763 (5%) per 100,000, while the rate of late-stage diagnoses decreases by 649 (7%) per 100,000.

CONCLUSIONS

- Annual MCED screening can reduce Stage IV incidence by 26-42% and late-stage incidence by 10-21% over a 50-year horizon.
- Biennial MCED screening can reduce Stage IV incidence by 15-27% and late-stage incidence by 5-12% over a 50-year horizon.

Our study suggests that MCED tests could be an effective tool for early cancer detection, which is associated with improved survival and quality of life. However, their real-world impact and costeffectiveness require further investigation.

REFERENCES

- Harding MC et al. (2018). Transitions From Heart Disease to Cancer as the Leading Cause of Death in US States, 1999–2016. Prev Chronic Dis. 15.
- 2. Crosby D et al. (2022). Early detection of cancer. *Science*. 375(6586):eaay9040.
- 3. Centers for Disease Control and Prevention. Screening Tests. (2023).
- https://www.cdc.gov/cancer/dcpc/prevention/screening.htm
- 4. Siegel RL et al. (2023). Cancer statistics, 2023. CA Cancer J Clin. 73(1):17-48. 5. National Cancer Institute, DCCPS, Surveillance Research Program. Surveillance, Epidemiology, and End Results (SEER) Program. https://seer.cancer.gov/index.html
- 6. Douville C et al. (2022). 73P Multi-cancer early detection through evaluation of aneuploidy, methylation, and protein biomarkers in plasma. Ann Oncol. 33:S575.
- 7. Gainullin V et al. (2024). Performance of a multi-analyte, multi-cancer early detection (MCED) blood test in a prospectively-collected cohort. Presented at: AACR Annual Meeting 2024.
- 8. ElHabr A et al. (2023). EPH232 The Large Hidden Prevalence Rate of Cancer Using Backward Induction Method Reveals Screening Opportunity in Earlier Stages. Value Health. 26:S205.
- 9. Chhatwal J et al. (2023). Correlation of unobserved incidence of cancer in earlier stages with the observed incidence. J Clin Oncol. 41(16_suppl):10634-10634.

DISCLOSURES

This study was funded by Exact Sciences Corp., Madison, WI.